بیوانفورماتیک یک دانش بین رشته ای است که شامل روشها و نرم افزارهایی برای فهم اطلاعات زیستی است. بیوانفورماتیک به عنوان یک دانش بین رشته ای، به منظور تجزیه و تحلیل و تفسیر اطلاعات زیست شناسی، از ترکیب علوم کامپیوتر، آمار، ریاضی و مهندسی استفاده میکند. به عبارتی دیگر از بیوانفورماتیک برای تجزیه و تحلیل درون کامپیوتریِ مسائل زیست شناسی با استفاده از تکنیک های ریاضی و آمار استفاده می شود.
بیوانفورماتیک از برنامه ریزی های کامپیوتری برای تجزیه و تحلیل اختصاصی ژنومیکس استفاده می کند. از دیگر کاربردهای متداول بیوانفورماتیک، شناسایی چند شکلی های تک نوکلئوتیدی (SNPs) و ژن های کاندید است. چنین شناسایی هایی اغلب، با هدف فهم بهتر پایه ژنتیکی بیماری ها، تطابق و ایجاد خواص مطلوب (خصوصا در گونه های کشاورزی) یا شناخت تفاوت های میان جمعیت ها انجام می شود. بیوانفورماتیک همچنین به دنبال فهم بیشتری از اصول ساختاری نوکلئیک اسیدها و توالی پروتئین ها در قالب علم پروتومیکس می باشد.
در زیست شناسی مولکولی تجربی، تکنیک های بیوانفورماتیک مانند پردازش سیگنال و تصویرسازی سه بعدی منجر می شود مقادیر بالایی از اطلاعات خام بدست بیاید. تفسیر این اطلاعات نتایج جالبی را به ما ارائه می کند. برای مثال در زمینه ژنتیک و ژنومیکس، بیوانفورماتیک به تعیین توالی، تفسیر اطلاعات ژنومی و جهش های مشاهده شده در انسان کمک می کند.
بیوانفورماتیک همچنین نقش مهمی در تجزیه و تحلیل تنظیم و بیان ژن و پروتئین ایفا می کند. در حالت کلی بیوانفورماتیک به مقایسه ژنتیک و اطلاعات ژنومیکس و به دنبال آن به فهم چگونگی تکامل زیست مولکولی کمک میکند. این علم همچنین در شبیه سازی و مدلسازی DNA (1)، RNA(1-2) و پروتئین ها (3) و تعاملات زیست مولکولی کمک کننده است (4-6).
تاریخچه:
از لحاظ تاریخی، اصطلاح بیوانفورماتیک به معنای امروزی آن نیست. پائولین هوگوگ و بن هسپر بیوانفورماتیک را در سال 1970 برای اشاره به مطالعه در زمینه پردازش اطلاعات و سیستم های زنده اختراع کردند (7-9). این تعریف از بیوانفورماتیک این علم را به عنوان یک حوضه در موازات با بیوفیزیک (مطالعه فرآیندهای فیزیک در سیستم های زیستی) یا بیوشیمی ( مطالعه فرآیندهای شیمی در سیستم های زیستی) قرار میدهد (7).
توالیها:
پس از اینکه توالی انسولین در اوایل 1950 توسط فریدریک سانگر مشخص شد، وجود کامپیوترها در زیست مولکولی ضرورت پیدا کرد. چرا که مقایسه ی توالیهای متعدد به صورت دستی طاقت فرسا بود. در این زمینه مارگارت دایهوف پیشگام شد (10) و اولین پایگاه داده توالی پروتئینی را گردآوری و به عنوان کتاب (11) و روش های پیشگام در هم ترازی (alignment) توالی و ارزیابی مولکولی منتشر کرد (12). از جمله افراد دیگر در حوضه شکل گیری بیوانفورماتیک الوین کابات بود که در تجزیه و تحلیل توالی زیستی در سال 1970 پیشقدم شد (13).
توالی ژن ها و پروتئین های مختلف ممکن است پهلو به پهلو برای اندازه گیری شباهت هایشان هم تراز شوند.
این ترازبندی توالی پروتئین حاوی دومین های WPP را مقایسه میکند.
اهداف:
به منظور درک بهتر از چگونگی تغییر فعالیت های سلولی نرمال در بیماری های مختلف، باید اطلاعات زیستی ترکیب شوند تا تصویری جامع از این فعالیت ها شکل بگیرد.از اینرو بیوانفورماتیک در زمینه تجزیه و تحلیل و تفسیر انواع مختلفی از داده ها به کمک ما می آید. این داده ها شامل توالی نوکلئوتیدها و اسیدهای آمینه، دومین ها و ساختارهای پروتئینی است (14). فرآیند تجزیه و تحلیل و تفسیر اطلاعات شامل:
توسعه و پیاده سازی برنامه های کامپیوتری به منظور دسترسی کارآمد، استفاده و مدیریت از انواع مختلفی از اطلاعات
توسعه ی الگوریتم های جدید ( فرمول های ریاضی) و مقیاس های آماری به منظور ارزیابی ارتباطات میان اعضای مجموع داده های حجیم
به عنوان مثال می توان در شرایط کامپیوتری، یک ژن را در داخل یک توالی خاص قرار داد و ساختار یا عملکرد پروتئین آن را پیش بینی کرد.
هدف اولیه بیوانفورماتیک افزایش سطح فهم و درک از فرآیندهای زیستی است و تمرکز آن در توسعه و کاربرد تکنیکهای محاسباتی جامع به منظور کسب این هدف است برای مثال میتوان به تشخیص الگو، داده کاوی، الگوریتم های یادگیری و تصویرسازی اشاره کرد. تلاش های تحقیقاتی گسترده ای در این زمینه (شامل هم ترازی توالی، ژن یابی، گردآوری ژنوم، طراحی و کشف دارو، پیش بینی ساختار پروتئین، پیش بینی بیان ژن، برهم کنش پروتئین-پروتئین، مطالعات مربوط به ژنوم، مدلسازی تکامل و تقسیم سلولی) در حال انجام است.
در چند دهه گذشته، پیشرفت سریع در علم ژنومیک و دیگر تکنیک های تحقیقات مولکولی با تکنیک های تجمیع اطلاعات (به منظور تولید مقادیر بسیار بالای از اطلاعات مرتبط با زیست مولکولی)، ترکیب شده اند. فعالیت های متداول در بیوانفورماتیک شامل نقشه کشی و آنالیز توالی های DNA و پروتئین، هم ترازی توالی های DNA و پروتئین به منظور مقایسه آنها و ایجاد مدلهای سه بعدی از ساختارهای پروتئین است.
کاربردهای بیوانفورماتیک:
تجزیه و تحلیل توال ها: از زمان توالی یابی فاژ Φ-X174در سال 1977 (15) توالی DNA هزاران موجود تعیین و در پایگاههای داده ذخیره شد. این اطلاعات توالی به منظور تعیین ژن های کدکننده پروتئین، RNA، توالیهای تنظیمی، موتیف های ساختاری و توالی های تکرای تجزیه و تحلیل میشوند. مقایسه ژنها درون و میان گونه ها میتواند شباهت میان عملکرد پروتئین ها یا ارتباطات میان گونهها (درخت فیلوژنیک) را نشان دهد. امروزه برنامه های کامپیوتری مانند BLAST به صورت روزمره برای جستجوی توالی بیشتر از 260000 موجود زنده شامل بیشتر از 190 میلیارد نوکلئوتید استفاده میشود (16).
آنالیز توالی در بیوانفورماتیک برای توالی یابی، گردآوری ژنوم، تفسیر ژنوم و موارد دیگر به کار می رود.
تجزیه و تحلیل ساختار سلولی: روش های متعددی برای تجزیه و تحلیل موقعیت اندامکها، پروتئینها و دیگر اجزا داخل سلولی ایجاد شدهاند. این روشها به ما کمک میکند تا بتوانیم رفتارهای سیستم های زیستی را به درستی پیشبینی کنیم.
بیوانفورماتیک ساختاری: پیشبینی ساختار پروتئین یکی دیگر از کاربردهای بیوانفورماتیک است. توالی اسیدآمینهای پروتئین که ساختار اولیه نامیده می شود می تواند به راحتی توسط توالی ژن رمز کنندهاش تعیین شود. شناخت ساختار اولیه در فهم عملکر پروتئین حیاتی است. بیوانفورماتیک میتواند ساختار یک پروتئین را از طریق بررسی شباهت بین ژن رمز کنندهی پروتئین و ژنی که عملکرد آن مشخص شده است پیش بینی کند (17).
منابع
Sim, Adelene YL; Minary, Peter; Levitt, Michael (2012-06-01). “Modeling nucleic acids”. Current Opinion in Structural Biology. Nucleic acids/Sequences and topology. 22(3): 273–278.
Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (February 1977). “Nucleotide sequence of bacteriophage phi X174 DNA”. Nature. 265 (5596): 687–95. Bibcode:265..687S. doi:10.1038/265687a0. PMID870828.
Hoy, JA; Robinson, H; Trent JT, 3rd; Kakar, S; Smagghe, BJ; Hargrove, MS (3 August 2007). “Plant hemoglobins: a molecular fossil record for the evolution of oxygen transport.”. Journal of Molecular Biology. 371(1): 168–79. doi:1016/j.jmb.2007.05.029. PMID17560601